Hauptmenü
Home
Bauen
Essen & Trinken
Finanzen
Flora & Fauna
Gesundheit
Informationstechnologie
Kunst & Kultur
Politik / Geschichte
Sport & Freizeit
Technik
Transport und Verkehr
Wissenschaft
Google-Werbung
 
   
Home
Batterie Drucken E-Mail
Eine Batterie ist ein elektrochemischer Energiespeicher und ein Wandler. Bei der Entladung wird gespeicherte chemische Energie durch die elektrochemische Redoxreaktion in elektrische Energie umgewandelt. Diese kann von einem vom Stromnetz unabhängigen elektrischen Verbraucher genutzt werden. Alternativ kann sie auch in einem vom Stromnetz abhängigen Verbraucher eingesetzt werden, um kurzzeitige Ausfälle im Stromversorgungsnetz zu überbrücken und so eine unterbrechungsfreie Stromversorgung sicherzustellen.

In nicht wiederaufladbaren Primärbatterien sind die Reaktionen bei der Entladung nicht oder nur teilweise umkehrbar. Dagegen sind sie in wiederaufladbaren Sekundärbatterien (Akkumulatoren) weitgehend umkehrbar, so dass eine mehrfache Umwandlung von chemischer in elektrische Energie und zurück möglich ist.

Der Begriff „Batterie“ bezeichnet eine Zusammenschaltung mehrere galvanischer Zellen. Umgangssprachlich wird der Begriff auch für einzelne galvanische Zellen verwendet.

Aufgrund der vielen Einsatzbereiche mit sehr unterschiedlichen Anforderungen bezüglich Spannung, Leistung und Kapazität gibt es heute Batterien in nahezu unüberschaubaren Ausführungen.

Grundlagen

Die Elektrodenmaterialien legen die Nennspannung der Zelle fest. Höhere Spannungen erhält man durch Hintereinanderschalten (Reihenschaltung) mehrerer Zellen.

Als Kapazität einer Batterie (nicht zu verwechseln mit der elektrischen Kapazität) wird die in der Batterie gespeicherte elektrische Ladung bezeichnet. Man unterscheidet die theoretische Kapazität (hängt von der Menge des aktiven Materials in der Batterie ab) von der unter bestimmten Bedingungen entnehmbaren Ladung („praktische“ Kapazität). Die Kapazität wird meist in Amperestunden (Abkürzung: Ah) und selten in Coulomb (Einheitenzeichen: C) angegeben. Die Kapazität hängt nicht von der Anzahl der hintereinander in Reihe geschalteten Zellen ab, erhöht sich jedoch bei Parallelschaltung.

Die entnehmbare Kapazität einer Batterie hängt von den Entladebedingungen (beispielsweise Belastung, Entladeschlussspannung, Temperatur) sowie der Vorgeschichte der Batterie (beispielsweise Dauer und Bedingungen der Lagerung vor der Entladung) ab. Deswegen werden praktische Batteriekapazitäten durch genormte Entladeverfahren unter vorgegebenen Bedingungen bestimmt. Zu den üblichen Entladeverfahren zählen die Entladung mit konstantem Strom, die Entladung über einen konstanten Widerstand und die Entladung mit konstanter Leistung. Je nach Entladeverfahren weist die Batterie eine andere Kapazität auf. In einer sinnvollen Angabe der Nennkapazität müssen daher Entladeverfahren und Entladebedingungen mit aufgeführt werden. Batteriekapazitäten können den Datenblättern der Batteriehersteller entnommen werden.

Generell nimmt die entnehmbare Kapazität einer Batterie mit zunehmendem Entladestrom ab. Gründe dafür sind die zunehmenden Verluste am Innenwiderstand der Batterie und die begrenzte Geschwindigkeit der elektrochemischen Prozesse und Transportvorgänge in der Batterie. Die Verringerung der entnehmbaren Kapazität mit zunehmendem Entladestrom ist stark vom elektrochemischen System und dem Aufbau der Batterie abhängig.

Die Batteriekapazität oder der Maximalstrom bei gegebener Spannung lassen sich durch größer gebaute Zellen oder durch Parallelschaltung von Zellen oder Batterien erhöhen.

Die Leistung einer Batterie ist die Menge an elektrischer Energie, die pro Zeiteinheit entnommen werden kann. Sie wird in der Regel in Watt (Einheitenzeichen W) angegeben und ist das Produkt aus Entladestrom und Entladespannung.

Die in einer Batterie gespeicherte Energie wird meist nicht angegeben, die Energie pro Masse oder pro Volumen ist jedoch eine wichtige Kenngröße von Batteriesystemen.

Alle Batterien unterliegen bei Lagerung der Selbstentladung. Die Geschwindigkeit der Selbstentladung hängt unter anderem vom Batterietyp und der Temperatur ab. Je niedriger die Lagertemperatur, desto geringer ist die Selbstentladung.

Entsorgung

In Deutschland regelt die Batterieverordnung die Rücknahme und Entsorgung von Batterien. Sie legt unter anderem fest, dass in Deutschland keine Batterien oder Zellen mit einem Quecksilbergehalt von mehr als 0,0005 Gewichtsprozent in den Verkehr gebracht werden dürfen. Bei Knopfzellen darf der Quecksilbergehalt nicht über 2,0 Gewichtsprozent liegen. Alkali-Mangan-Batterien enthalten seit Beginn der 1990er Jahre kein Quecksilber mehr. Davor wurde es zum Amalgamieren des Elektrodenmaterials Zink verwendet.

Kleine Batterien können in Deutschland in die Einzelhandelsgeschäfte zurückgebracht werden, wenn diese auch Batterien verkaufen. Zu diesem Zweck müssen dort Sammelbehälter aufgestellt sein.

Für Autobatterien existiert in Deutschland ein Pfandsystem.

Batterien und Akkumulatoren gehören nicht in andere Müllsammelbehälter oder in die Umwelt, da sie potenziell umweltschädliche und zudem wiedergewinnbare wertvolle Rohstoffe enthalten.

Adapter und Kontaktierung

Nicht jeder Batterietyp ist in jedem Land erhältlich. Deshalb gibt es zum Beispiel Flachbatterie-Adapter, die drei AA-Zellen zu je 1,5 V aufnehmen. Diese lassen sich in allen Geräten verwenden, in die auch eine Flachbatterie hineinpasst. Nützlich sind diese Adapter auch, weil es bis dato keine wiederaufladbaren Flachbatterien gibt.

Manche Batteriehersteller bauen gleichartige Primärzellen in unterschiedliche Gehäusegrößen ein.

Die Kontaktierung kleiner Batterien erfolgt meist mit Federkontakten, zuverlässigere Ausführungen für Lithiumbatterien sind vergoldet, um die Zellenspannung exakt bestimmen zu können. Fest eingebaute Akkumulatoren sind mit Steckkontakten, Polbolzen oder Lötfahnen versehen.

Batteriepacks aus mehreren Zellen sind untereinander mit Blechbändern verschweißt.

Auslaufende Batterien (besonders Zink-Kohle-Zellen, aber auch austretende Schwefelsäure bei Bleiakkumulatoren) führen zu Korrosion und erhöhten Kontakt-Übergangswiderständen.

Geschichte

Das erste funktionierende galvanische Element und damit die erste Batterie wurde in Form der Voltaschen Säule im Jahr 1800 von Alessandro Volta vorgestellt. 1901 entwickelte Paul Schmidt in Berlin die Trockenbatterie und begründete die DAIMON-Werke.

Regelmäßig wieder auftretende Mutmaßungen über bereits in der Antike genutzte Batterien gründen sich hauptsächlich auf ein einzelnes Tongefäß, das 1936 von dem österreichischen Archäologen Wilhelm König südöstlich von Bagdad entdeckt wurde und in dem er ein galvanisches Element zu erkennen glaubte. Aus verschiedenen Gründen ist die Funktion dieses als „Bagdad-Batterie“ bekannt gewordenen Gefäßes zweifelhaft.

Dieser Artikel basiert auf dem Artikel Batterie aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
< zurück   weiter >
Aktuelle IT News