Hauptmenü
Home
Bauen
Essen & Trinken
Finanzen
Flora & Fauna
Gesundheit
Informationstechnologie
Kunst & Kultur
Politik / Geschichte
Sport & Freizeit
Technik
Transport und Verkehr
Wissenschaft
Google-Werbung
 
   
Home
Neuronale Netze Drucken E-Mail
Neuronale Netze bilden die Struktur und Informationsarchitektur von Gehirn und Nervensystem von Tieren und Menschen: Neuronen und Glia sind in der Art eines Netzes miteinander verknüpft. Zwischen ihnen findet auf chemischem und elektrischem Weg ein Informationsaustausch statt.

Die „Schaltungstechnik“ von Neuronen kennt üblicherweise mehrere Eingangsverbindungen sowie eine Ausgangsverbindung. Wenn die Summe der Eingangsreize einen gewissen Schwellenwert überschreitet, der wiederum von einer Inhibitor-Leitung beeinflusst sein kann, „feuert“ das Neuron: Ein Aktionspotenzial wird an seinem Axonhügel ausgelöst und entlang des Axons weitergeleitet - das Ausgangssignal des Neurons.

Lernen

Über das Lernen in neuronalen Netzen gibt es verschiedene Theorien. Die erste neuronale Lernregel wurde 1949 von Donald O. Hebb beschrieben (Hebb'sche Lernregel); wesentliche Entwicklungen erfolgten u. a. durch Arbeiten des Finnen Teuvo Kohonen Mitte der 1980er Jahre.

Daraus ergaben sich typische Eigenschaften neuronaler Netze, die gleichermaßen für natürliche wie für künstliche Systeme gelten. Dazu gehört die Eigenschaft, dass sie komplexe Muster lernen können, ohne dass eine Abstraktion über die diesen Mustern zugrunde liegenden Regeln stattfindet. Das heißt, vor dem Lernen müssen diese Regeln nicht entwickelt werden – aber nachher kann aus dem neuronalen Netz auch nicht die Logik ermittelt werden, die dessen Lernerfolg ausmachte.

Das richtige Trainieren eines neuronalen Netzes ist somit Voraussetzung für den Lernerfolg bzw. für die richtige Verarbeitung eines Musters in einem Nervensystem. Umgekehrt gilt, dass eine Vorhersage über die „richtige“ Interpretation eines Musters durch ein neuronales Netz nicht präzise möglich ist, solange nicht dieses spezifische Netz mit dieser spezifischen Lernerfahrung angewendet bzw. durchgerechnet wird.

Forschung

    * Die Untersuchung der biochemischen und physiologischen Eigenschaften neuronaler Netze ist ein Gegenstand der Neurophysiologie.
    * In der Neuroinformatik wird versucht, neuronale Netze computergestützt durch künstliche neuronale Netze zu simulieren bzw. die Eigenschaften neuronaler Netze für Software-Anwendungen nutzbar zu machen.
    * Eine konzeptionelle Abstraktion neuronaler Netze findet ebenfalls in der theoretischen Biologie statt.


Künstliches neuronales Netz

Künstliche neuronale Netze (kurz: KNN, engl. artificial neural network – ANN) sind Netze aus künstlichen Neuronen. Sie sind ein Zweig der künstlichen Intelligenz und prinzipieller Forschungsgegenstand der Neuroinformatik. Der Ursprung der künstlichen neuronalen Netze liegt, ebenso wie bei den künstlichen Neuronen, in der Biologie. Man stellt sie den natürlichen neuronalen Netzen gegenüber, welche Nervenzellvernetzungen im Gehirn und im Rückenmark bilden. Insgesamt geht es aber um eine Abstraktion (Modellbildung) von Informationsverarbeitung und weniger um das Nachbilden biologischer neuronaler Netze.

Beschreibung

Künstliche neuronale Netze basieren meist auf der Vernetzung vieler McCulloch-Pitts-Neuronen oder leichter Abwandlungen davon. Grundsätzlich können auch andere künstliche Neuronen Anwendung in KNNen finden, z.B. das High-Order-Neuron. Die Topologie eines Netzes (die Zuordnung von Verbindungen zu Knoten) muss abhängig von seiner Aufgabe gut durchdacht sein. Nach der Konstruktion eines Netzes folgt die Trainingsphase, in der das Netz „lernt“. Theoretisch kann ein Netz durch folgende Methoden lernen:

    * Entwicklung neuer Verbindungen, Löschen bestehender Verbindungen
    * Ändern der Wichtung (der Gewichte wij von Neuron i zu Neuron j)
    * Anpassen der Schwellwerte der Neuronen
    * Hinzufügen oder Löschen von Neuronen

Außerdem verändert sich das Lernverhalten bei Veränderung der Aktivierungsfunktion der Neuronen oder der Lernrate des Netzes. Praktisch gesehen "lernt" ein Netz hauptsächlich durch Modifikation der Gewichte der Neuronen. Eine Anpassung des Schwellwertes kann hierbei durch ein Bias-Neuron (englisch to bias heißt hier etwa verzerren) mit erledigt werden. Dadurch sind KNNs in der Lage, komplizierte nichtlineare Funktionen über einen „Lern”-Algorithmus, der durch iterative oder rekursive Vorgehensweise aus vorhandenen Eingangs- und gewünschten Ausgangswerten alle Parameter der Funktion zu bestimmen versucht, zu erlernen. KNNs sind dabei eine Realisierung des konnektionistischen Paradigmen, da die Funktion aus vielen einfachen gleichartigen Teilen besteht. Erst in ihrer Summe wird das Verhalten kompliziert.

Anwendung

Seine besonderen Eigenschaften machen das KNN bei allen Anwendungen interessant, bei denen kein bzw. nur geringes explizites (systematisches) Wissen über das zu lösende Problem vorliegt. Dies sind z.B. die Texterkennung, Bilderkennung und Gesichtserkennung, bei denen einige Hunderttausend bis Millionen Bildpunkte in eine im Vergleich dazu geringe Anzahl von erlaubten Ergebnissen überführt werden müssen.

Auch in der Regelungstechnik kommen KNN zum Einsatz, um herkömmliche Regler zu ersetzen oder ihnen Sollwerte vorzugeben, die das Netz aus einer selbst entwickelten Prognose über den Prozessverlauf ermittelt hat.

Die Anwendungsmöglichkeiten sind aber nicht auf techniknahe Gebiete begrenzt: Bei der Vorhersage von Veränderungen in komplexen Systemen werden KNNs unterstützend hinzugezogen, z.B. zur Früherkennung sich abzeichnender Tornados oder aber auch zur Abschätzung der weiteren Entwicklung wirtschaftlicher Prozesse.

Dieser Artikel basiert auf dem Artikel Mechatronik aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
< zurück   weiter >
Aktuelle IT News