Hauptmenü
Home
Bauen
Essen & Trinken
Finanzen
Flora & Fauna
Gesundheit
Informationstechnologie
Kunst & Kultur
Politik / Geschichte
Sport & Freizeit
Technik
Transport und Verkehr
Wissenschaft
Google-Werbung
 
   
Home
Künstliche Intelligenz Drucken E-Mail
Künstliche Intelligenz (KI, engl. artificial intelligence, AI) ist ein Teilgebiet der Informatik, das sich mit der Automatisierung intelligenten Verhaltens befasst. Der Begriff ist insofern schwierig, als es keine genaue Definition von Intelligenz gibt. Trotzdem findet er in der Forschung und Entwicklung Anwendung.

Überblick

Im Verständnis des Begriffs künstliche Intelligenz spiegelt sich oft die aus der Aufklärung stammende Vorstellung vom „Menschen als Maschine“ wider, dessen Nachahmung sich die so genannte starke KI zum Ziel setzt: eine Intelligenz zu erschaffen, die wie der Mensch kreativ nachdenken und Probleme lösen kann und die sich durch eine Form von Bewusstsein beziehungsweise Selbstbewusstsein sowie Emotionen auszeichnet. Die Ziele der starken KI sind nach Jahrzehnten der Forschung weiterhin visionär.

Im Gegensatz zur starken KI geht es der schwachen KI darum, konkrete Anwendungsprobleme zu meistern. Insbesondere sind dabei solche Anwendungen von Interesse, zu deren Lösung nach allgemeinem Verständnis eine Form von „Intelligenz“ notwendig zu sein scheint. Letztlich geht es der schwachen KI somit um die Simulation intelligenten Verhaltens mit Mitteln der Mathematik und der Informatik, es geht ihr nicht um Schaffung von Bewusstsein oder um ein tieferes Verständnis von Intelligenz. Während die starke KI an ihrer philosophischen Fragestellung bis heute scheiterte, sind auf der Seite der schwachen KI in den letzten Jahren bedeutende Fortschritte erzielt worden.

Neben den Forschungsergebnissen der Kerninformatik selbst sind in die KI Ergebnisse der Psychologie und Neurologie, Mathematik und Logik, Kommunikationswissenschaft, Philosophie und Linguistik eingeflossen. Die Beeinflussung der Neurologie hat sich in der Ausbildung des Bereichs Neuroinformatik gezeigt, der der biologieorientierten Informatik zugeordnet ist. Zusätzlich ist auch der ganze Zweig der Kognitionswissenschaft zu nennen, welcher sich wesentlich auf die Ergebnisse der künstlichen Intelligenz in Zusammenarbeit mit der kognitiven Psychologie stützt.

Es lässt sich festhalten, dass die KI kein abgeschlossenes Forschungsgebiet darstellt. Vielmehr werden Techniken aus verschiedenen Disziplinen verwendet, ohne dass diese eine Verbindung miteinander haben. Bei künstlichen neuronalen Netzen handelt es sich um Techniken, die ab Mitte des 20. Jahrhunderts entwickelt wurden und auf der Neurophysiologie aufbauen.

Teilgebiete der KI

Es werden mindestens vier Intelligenzarten unterschieden:

   1. Visuelle Intelligenz
   2. Sprachliche Intelligenz
   3. Manipulative Intelligenz
   4. Rationale Intelligenz

Des Weiteren kommen, je nach Differenzierungsgrad, solche Intelligenztypen wie emotionale Intelligenz hinzu. Entsprechend der vier Intelligenzarten sind zurzeit vier Teilgebiete in der Entwicklung:

   1. Die Bereiche der Mustererkennung und Musteranalyse machten Geräte möglich, die Bilder beziehungsweise Formen erkennen können, beispielsweise Fingerabdrücke bei der Verbrechensaufklärung, die menschliche Iris bei der Personenidentifizierung, Werkstücke bei der maschinellen Fertigung und Qualitätskontrolle.
   2. Man kann heutzutage per Computer einen eingegebenen Text in Sprache umwandeln und umgekehrt gesprochene Sprache in einen Text umwandeln. Sprachsynthese und Spracherkennung können somit als Schnittstelle zwischen Computer und Mensch fungieren. Mithilfe von Verfahren der automatischen Sprachverarbeitung, wie beispielsweise der latenten semantischen Analyse lassen sich die Bedeutung von Wörtern und Texten erfassen.
   3. In der Fabrikationstechnik werden zunehmend frei programmierbare Automaten eingesetzt, die gefährliche Arbeiten übernehmen und beispielsweise Schweiß- und Lackierarbeiten oder eintönige „Handgriffe“ durchführen.
   4. Computer, die in diesen Bereichen eingesetzt werden heißen Expertensysteme. Solche Expertensysteme basieren auf einer Datenbank, in der Fachwissen gespeichert ist. Darauf basierend kann das System, zusammen mit dem Anwender, Fachaufgaben lösen. Wichtig ist, dass jede Schlussfolgerung des Programms von diesem anhand der vorher eingespeicherten Fakten begründet werden kann. Sie werden zurzeit in folgenden Bereichen mit Erfolg eingesetzt:
          * medizinische Computerdiagnose
          * Fehlersuch- und Fehlerbehebungsprogramme
          * industrielle Großfertigung, beim Militär, zivile Luftfahrt, Verkehrswesen.

Der Grundgedanke ist es, zu untersuchen, unter welchen Bedingungen Computer Verhaltensweisen von Lebewesen, die auf Intelligenz beruhen, nachvollziehen können. Forschungsbereiche hierzu sind z. B. die Robotik, die Wissensverarbeitung und die Spracherkennung.

Methoden der KI

Die Methoden der KI lassen sich grob in zwei Dimensionen einordnen: Symbolische vs. Neuronale KI und Simulationsmethode vs. phänomenologische Methode.

Die Neuronale KI verfolgt einen bottom-up-Ansatz und möchte das menschliche Gehirn möglichst präzise nachbilden. Die Symbolische KI verfolgt umgekehrt einen top-down-Ansatz und nähert sich den Intelligenzleistungen von einer begrifflichen Ebene her. Die Simulationsmethode orientiert sich so nah wie möglich an den tatsächlichen kognitiven Prozessen des Menschen. Dagegen kommt es dem phänomenologischen Ansatz nur auf das Ergebnis an.

Viele ältere Methoden, die in der KI entwickelt wurden, basieren auf heuristischen Lösungsverfahren. In jüngerer Zeit spielen mathematisch fundierte Ansätze aus der Statistik, der Mathematischen Programmierung und der Approximationstheorie eine bedeutende Rolle.

Die konkreten Techniken der KI lassen sich grob in Gruppen einteilen:

Suchen

Die KI beschäftigt sich häufig mit Problemen, bei denen nach bestimmten Lösungen gesucht wird. Verschiedene Suchalgorithmen werden dabei eingesetzt. Ein Paradebeispiel für die Suche ist der Vorgang der Wegfindung, der in vielen Computerspielen eine zentrale Rolle einnimmt und auf Suchalgorithmen wie zum Beispiel dem A*-Algorithmus basiert.

Planen

Neben dem Suchen von Lösungen stellt das Planen einen wichtigen Aspekt der KI dar. Der Vorgang des Planens unterteilt sich dabei in 2 Phasen:

   1. Die Zielformulierung: Ausgehend vom momentanen Weltzustand wird ein Ziel definiert. Ein Ziel ist hierbei eine Menge von Weltzuständen bei der ein bestimmtes Zielprädikat erfüllt ist.
   2. Die Problemformulierung: Nachdem bekannt ist, welche Ziele angestrebt werden sollen, wird in der Problemformulierung festgelegt welche Aktionen und Weltzustände betrachtet werden sollen. Es existieren hierbei verschiedene Problemtypen.

Planungssysteme planen und erstellen aus solchen Problembeschreibungen Aktionsfolgen, die Agentensysteme ausführen können, um ihre Ziele zu erreichen.

Optimierungsmethoden

Oft führen Aufgabenstellungen der KI zu Optimierungsproblemen. Diese werden je nach Struktur entweder mit Suchalgorithmen aus der Informatik oder, zunehmend, mit Mitteln der Mathematischen Programmierung gelöst. Bekannte heuristische Suchverfahren aus dem Kontext der KI sind Evolutionäre Algorithmen.

Logisches Schließen

Eine Fragestellung der KI ist die Erstellung von Wissensrepräsentationen, die dann für automatisches logisches Schließen benutzt werden können. Menschliches Wissen wird dabei – soweit möglich – formalisiert, um es in eine maschinenlesbare Form zu bringen. Diesem Ziel haben sich die Entwickler diverser Ontologien verschrieben.

Schon früh beschäftigte sich die KI damit, automatische Beweissysteme (Deduktionssysteme) zu konstruieren, die Mathematikern und Informatikern beim Beweisen von Sätzen und beim Programmieren (Logikprogrammierung) behilflich wären. Zwei Schwierigkeiten stellten sich:

   1. Formuliert man Sätze in mächtigen, für den Benutzer bequemen Beschreibungssprachen (beispielsweise Prädikatenlogik), werden die entstehenden Suchprobleme sehr schwierig. In der Praxis machte man Kompromisse, wo die Beschreibungssprache für den Benutzer etwas umständlicher, die zugehörigen Optimierungsprobleme für den Rechner einfacher zu handhaben waren (Prolog, Expertensysteme).
   2. Selbst mächtige Beschreibungssprachen werden unhandlich, wenn man versucht, unsicheres oder unvollständiges Wissen zu formulieren. Für praktische Probleme kann dies eine sehr ernste Einschränkung sein. Die aktuelle Forschung untersucht daher Systeme, die die Regeln der Wahrscheinlichkeitsrechnung verwendet, um Unwissen und Unsicherheit explizit zu modellieren. Algorithmisch unterscheiden sich diese Methoden sehr von den älteren Verfahren (statt Symbolen werden Wahrscheinlichkeitsverteilungen manipuliert).

Eine andere Form des logischen Schließens stellt die Induktion dar (Induktionsschluss, Induktionslogik), in der Beispiele zu Regeln verallgemeinert werden (maschinelles Lernen). Auch hier spielt Art und Mächtigkeit der Wissensrepräsentation eine wichtige Rolle. Man unterscheidet zwischen symbolischen Systemen, in denen das Wissen – sowohl die Beispiele als auch die induzierten Regeln – explizit repräsentiert ist, und subsymbolischen Systemen wie neuronalen Netzen, denen zwar ein berechenbares Verhalten „antrainiert“ wird, die jedoch keinen Einblick in die erlernten Lösungswege erlauben.

Approximationsmethoden

In vielen Anwendungen geht es darum, aus einer Menge von Daten eine allgemeine Regel abzuleiten (maschinelles Lernen). Mathematisch führt dies zu einem Approximationsproblem. Im Kontext der KI wurden hierzu künstliche neuronale Netze vorgeschlagen. In praktischen Anwendungen verwendet man häufig alternative Verfahren, die mathematisch einfacher zu analysieren sind.

Anwendungen

In der Vergangenheit sind Erkenntnisse der künstlichen Intelligenz mit der Zeit oft in die anderen Gebiete der Informatik übergegangen: Sobald ein Problem gut genug verstanden wurde, hat sich die KI neuen Aufgabenstellungen zugewandt. Zum Beispiel wurden der Compilerbau oder Computeralgebra ursprünglich der künstlichen Intelligenz zugerechnet.

Zahlreiche Anwendungen wurden auf der Grundlage von Techniken entwickelt, die einst Forschungsgebiete der KI waren oder es noch sind. Einige Beispiele:

    * Suchmaschinen erleichtern den Umgang mit der im Internet vorhandenen Informationsflut.
    * Bei der Exploration von Ölquellen, der Steuerung von Marsrobotern oder der medizinischen Diagnose werden Expertensysteme eingesetzt.
    * Maschinelle Übersetzung ist weit verbreitet. Ihre Ergebnisse sind noch nicht vergleichbar mit denen menschlicher Übersetzer, sparen jedoch viel Zeit und Geld.
    * Maschinelle Textzusammenfassung bietet einige vielversprechende Erfolgsaussichten.
    * Analyse und Prognose von Aktienkursentwicklungen wird gelegentlich durch künstliche neuronale Netze unterstützt.
    * Optische Zeichenerkennung liest gedruckte Texte zuverlässig.
    * Handschrifterkennung wird millionenfach in PDAs verwendet.
    * Spracherkennung ermöglicht das Diktieren eines Textes.
    * Computeralgebra-Systeme, wie Mathematica oder Maple, unterstützen Mathematiker, Wissenschaftler und Ingenieure bei ihrer Arbeit.
    * Computer-Vision-Systeme überwachen öffentliche Plätze, Produktionsprozesse oder sichern den Straßenverkehr.
    * In Computerspielen dienen die Algorithmen, die in der KI entwickelt wurden dazu, computergesteuerte Mitspieler intelligent handeln zu lassen. Beispiele solcher Anwendungen sind Deep Blue, ein Schachcomputer, der 1997 den Weltmeister Garri Kasparow besiegte, und das Programm Chinook, das seit 1994 Dame-Weltmeister ist.
    * Bei Gruppensimulationen für Sicherheitsplanung oder Computeranimation wird ein möglichst realistisches Verhalten von (Menschen-)Massen berechnet.
    * Ein wissensbasiertes System bzw. spezieller ein Expertensystem stellt Lösungen bei komplexen Fragestellungen zur Verfügung.

Turing-Test

Um ein Maß zu haben, wann eine Maschine eine dem Menschen gleichwertige Intelligenz simuliert, wurde von Alan Turing der nach ihm benannte Turing-Test vorgeschlagen. Dabei stellt ein Mensch per Terminal (also ohne Sicht- bzw. Hörkontakt zu den Teilnehmern) einem anderen Menschen und einer KI beliebige Fragen. Der Fragesteller muss danach entscheiden, wer von den beiden Befragten die Maschine ist. Ist die Maschine nicht von dem Menschen zu unterscheiden, so ist laut Turing die Maschine intelligent. Bisher hat keine Maschine diesen Turing-Test bestanden. Seit 1991 existiert der Loebner-Preis für den Turing-Test.

Geschichte der KI

Am 13. Juli 1956 begann am Dartmouth College eine berühmte Konferenz, die von John McCarthy, Marvin Minsky, Nathan Rochester und Claude Shannon organisiert wurde. McCarthy prägte den Begriff „artificial intelligence“ („künstliche Intelligenz“) 1955 in dem Förderantrag an die Rockefeller Foundation als Thema dieser Dartmouth Conference. Die Dartmouth Conference im Sommer 1956 war die erste Konferenz, die sich dem Thema künstliche Intelligenz widmete.

Basierend auf den Arbeiten von Alan Turing (unter anderem dem Aufsatz Computing machinery and intelligence) formulierten Allen Newell (1927–1992) und Herbert Simon (1916–2001) von der Carnegie Mellon University in Pittsburgh die Physical Symbol System Hypothesis, nach der Denken Informationsverarbeitung ist, Informationsverarbeitung ein Rechenvorgang, also Symbolmanipulation, ist und es auf das Gehirn als solches beim Denken nicht ankommt: Intelligence is mind implemented by any patternable kind of matter.

Diese Auffassung, dass Intelligenz unabhängig von der Trägersubstanz ist, wird von den Vertretern der starken KI-These geteilt, wie beispielsweise Marvin Minsky (* 1927) vom Massachusetts Institute of Technology (MIT), einem der Pioniere der KI, für den „das Ziel der KI die Überwindung des Todes ist“, oder von dem Roboterspezialisten Hans Moravec (* 1948) von der Carnegie-Mellon-University, der in seinem Buch „Mind Children“ (Kinder des Geistes) das Szenario der Evolution des postbiologischen Lebens beschreibt: Ein Roboter überträgt das im menschlichen Gehirn gespeicherte Wissen in einen Computer, so dass die Biomasse des Gehirns überflüssig wird und ein posthumanes Zeitalter beginnen kann, in dem das gespeicherte Wissen beliebig lange zugreifbar bleibt.

Insbesondere die Anfangsphase der KI war geprägt durch eine fast grenzenlose Erwartungshaltung im Hinblick auf die Fähigkeit von Computern, „Aufgaben zu lösen, zu deren Lösung Intelligenz notwendig ist, wenn sie vom Menschen durchgeführt werden“ (Minsky). Simon prognostizierte 1957 unter anderem, dass innerhalb der nächsten 10 Jahre ein Computer Schachweltmeister werden und einen wichtigen mathematischen Satz entdecken und beweisen würde, Prognosen, die nicht zutrafen und die Simon 1990, allerdings ohne Zeitangabe, wiederholte. Immerhin gelang es 1997 dem von IBM entwickelten System Deep Blue, den Schach-Weltmeister Garry Kasparov in sechs Partien zu schlagen.

Newell und Simon entwickelten in den 1960er Jahren den General Problem Solver, ein Programm, das mit einfachen Methoden beliebige Probleme lösen können sollte, ein Projekt, das nach fast zehnjähriger Entwicklungsdauer schließlich eingestellt wurde. McCarthy schlug 1958 vor, das gesamte menschliche Wissen in eine homogene, formale Darstellungsform, die Prädikatenlogik 1. Stufe, zu bringen. Die Idee war, Theorem-Beweiser zu konstruieren, die symbolische Ausdrücke zusammensetzen, um über das Wissen der Welt zu diskutieren.

Ende der 1960er Jahre entwickelte Joseph Weizenbaum (1923–2008) vom MIT mit einer relativ simplen Strategie das Programm ELIZA, in dem der Dialog eines Psychiaters mit einem Patienten simuliert wird. Die Wirkung des Programms war überwältigend. Weizenbaum war selbst überrascht, dass man auf relativ einfache Weise Menschen die Illusion eines beseelten Partners vermitteln kann. Auf einigen Gebieten erzielte die KI Erfolge, beispielsweise bei Strategiespielen (Schach, Dame, usw.), bei mathematischer Symbolverarbeitung, bei der Simulation von Robotern, beim Beweisen von logischen und mathematischen Sätzen und schließlich bei Expertensystemen. In einem Expertensystem wird das regelbasierte Wissen eines bestimmten Fachgebiets formal repräsentiert.

Das System ermöglicht dann bei konkreten Fragestellungen, diese Regeln automatisch auch in solchen Kombinationen anzuwenden, die (von dem menschlichen Experten) vorher nicht explizit erfasst wurden. Die zu einer bestimmten Problemlösung herangezogenen Regeln können dann wiederum auch ausgegeben werden, d.h. das System kann sein Ergebnis „erklären“. Einzelne Wissenselemente können hinzugefügt, verändert oder gelöscht werden; moderne Expertensysteme verfügen dazu über komfortable Benutzerschnittstellen.

Einem der bekanntesten Expertensysteme, dem Anfang der 1970er Jahre von T. Shortliffe an der Stanford University entwickelten System MYCIN zur Unterstützung von Diagnose- und Therapieentscheidungen bei Blutinfektionskrankheiten und Meningitis, wurde durch eine Evaluation attestiert, dass seine Entscheidungen so gut sind wie die eines Experten in dem betreffenden Bereich und besser als die eines Nicht-Experten. Allerdings reagierte das System, als ihm Daten einer Cholera-Erkrankung - bekanntlich eine Darm- und keine Blutinfektionskrankheit - eingegeben wurden, mit Diagnose- und Therapievorschlägen für eine Blutinfektionskrankheit, das heißt, MYCIN erkannte die Grenzen seiner Kompetenz nicht. Dieser Cliff-and-Plateau-Effekt ist bei Expertensystemen, die hochspezialisiert auf ein schmales Wissensgebiet angesetzt sind, nicht untypisch.

In den 1980er Jahren wurde der KI, parallel zu wesentlichen Fortschritten bei Hard- und Software, die Rolle einer Schlüsseltechnologie zugewiesen, insbesondere im Bereich der Expertensysteme. Man erhoffte sich vielfältige industrielle Anwendungen, perspektivisch auch eine Ablösung „eintöniger“ menschlicher Arbeit (und deren Kosten) durch KI-gesteuerte Systeme. Nachdem allerdings viele Prognosen nicht eingehalten werden konnten, reduzierten die Industrie und die Forschungsförderung ihr Engagement.

Mit den Neuronalen Netzen trat zur gleichen Zeit eine neue Perspektive der KI ans Licht, angestoßen u.a. von Arbeiten des finnischen Ingenieurs Teuvo Kohonen. In diesem Bereich der schwachen KI löste man sich von Konzepten von „Intelligenz“ und analysierte stattdessen, ausgehend von der Neurophysiologie, die Informationsarchitektur des menschlichen (/tierischen) Gehirns. Die Modellierung in Form künstlicher neuronaler Netze illustrierte dann, wie aus einer sehr einfachen Grundstruktur eine komplexe Musterverarbeitung geleistet werden kann. Die Neuroinformatik hat sich als wissenschaftliche Disziplin zur Untersuchung dieser Verfahren entwickelt.

Dabei wird deutlich, dass diese Art von Lernen im Gegensatz zu Expertensystemen nicht auf der Herleitung und Anwendung von Regeln beruht. Daraus folgt auch, dass die besonderen Fähigkeiten des menschlichen Gehirns nicht auf einen solchen regel-basierten Intelligenz-Begriff reduzierbar sind. Die Auswirkungen dieser Einsichten auf die KI-Forschung, aber auch auf Lerntheorie, Didaktik, das Verhältnis zum Bewusstsein und andere Gebiete werden noch diskutiert.

In der KI haben sich mittlerweile zahlreiche Subdisziplinen herausgebildet, so spezielle Sprachen und Konzepte zur Darstellung und Anwendung von Wissen, Modelle zu Fragen von Revidierbarkeit, Unsicherheit und Ungenauigkeit und maschinelle Lernverfahren. Die Fuzzy-Logik hat sich als weitere Form der schwachen KI etwa bei Maschinensteuerungen etabliert.

Weitere erfolgreiche KI-Anwendungen liegen in den Bereichen natürlich-sprachlicher Schnittstellen, Sensorik und Robotik.

Abgrenzung zu anderen Feldern der Informatik

Wie lässt sich eine Anwendung, der man Intelligenz-Eigenschaften zubilligt, von anderen Anwendungen unterscheiden? Diese Frage ist nicht ohne weiteres zu beantworten, könnte man doch den Standpunkt vertreten, dass auch bereits primitive Operationen wie Addition, Multiplikation usw. dem Menschen Intelligenz abverlangen. Dennoch würde man eine Anwendung zur Durchführung von Additionen kaum als eine Anwendung der künstlichen Intelligenz bezeichnen.

Das Problem liegt hier in der Definition und Abgrenzung des Intelligenzbegriffes selbst. Ein konstruktivistischer Ansatz zur Lösung des Problems besteht darin, wesentliche Intelligenzmerkmale der menschlichen Intelligenz zu abstrahieren und dann die Fähigkeiten einer gegebenen Anwendung an diesen Merkmalen zu messen. Dieser Ansatz hat zahlreiche Merkmale hervorgebracht, von denen mindestens die folgenden drei als notwendige Bedingungen angesehen werden:

   1. Die Fähigkeit zur Verarbeitung beliebiger Symbole (nicht nur Zahlen).
   2. Der Aufbau eines inneren Modells der äußeren Welt.
   3. Die Fähigkeit zu einer zweckentsprechenden Anwendung des Wissens.
   4. Die Fähigkeit, die im gespeicherten Wissen enthaltenen Zusammenhänge aufzudecken, d.h. logisch schlussfolgern zu können.
   5. Die Fähigkeit zur Verallgemeinerung (Abstraktion) und zur Spezialisierung (d.h. zu Anwendung allgemeiner Zusammenhänge auf konkrete Sachverhalte).
   6. Das Vermögen, erworbenes Wissen und vorhandene Erfahrung auf neue, bisher unbekannte Situationen zu übertragen.
   7. Die Fähigkeit, sich planvoll zu verhalten und entsprechende Strategien zum Erreichen der Ziele bilden zu können.
   8. Anpassungsfähigkeit an verschiedene, u.U. sich zeitlich ändernde Situationen und Problemumgebungen.
   9. Lernfähigkeit, verbunden mit dem Vermögen, partiellen Fortschritt oder Rückschritt einschätzen zu können.
  10. Die Fähigkeit, auch in unscharf bzw. unvollständig beschriebenen oder erkannten Situation handeln zu können.
  11. Die Fähigkeit zur Mustererkennung (Besitz von Sensoren) und zur aktiven Auseinandersetzung mit der Umwelt (Besitz von Effektoren).
  12. Die Fähigkeit, über ein Kommunikationsmittel von der Komplexität und Ausdrucksfähigkeit der menschlichen Sprache zu verfügen.

Weitere Merkmale und Fähigkeiten, die aber nicht als notwendig erachtet werden, sind etwa logisches Schlussfolgern, Verallgemeinerung und Spezialisierung, Verwendung natürlicher Sprache usw. Insgesamt existieren derzeit inklusive V1 bis V3 zwölf relativ gesicherte Merkmale. Es lässt sich nun sagen, dass eine Anwendung die V1 bis V3 erfüllen muss, um von einer Anwendung der künstlichen Intelligenz sprechen zu können. Je mehr weitere Merkmale die Anwendung erfüllt, desto höher kann der Grad an Intelligenz, den die Anwendung realisiert, bewertet werden. Bislang erfüllt zwar der Mensch sämtliche dieser Merkmale, doch es ist noch nicht gelungen, eine Anwendung zu entwickeln, die zugleich alle 12 Merkmale realisiert.

Insgesamt ist bei dem hier beschriebenen konstruktivistischen Ansatz zur Verwendung des Intelligenz-Begriffes zu beachten, dass dieser zwar zahlreiche Merkmale definiert und so fassbarer macht, dass andererseits jedoch die Fülle der Merkmale auch verhältnismäßig schwierig zu handhaben ist.

Philosophische Aspekte

Die philosophischen Aspekte der KI-Problematik gehören zu den weitreichendsten der gesamten Informatik.

Die Antworten, die auf die zentralen Fragen dieses Bereichs gegeben werden, reichen weit in ontologische und erkenntnistheoretische Themen hinein, die das Denken des Menschen schon in den Anfängen der Philosophie beschäftigten. Wer solche Antworten gibt, muss die Konsequenzen daraus auch für den Menschen und sich selbst ziehen. Nicht selten möchte man umgekehrt vorgehen und die Antworten, die man vor der Entwicklung künstlicher Intelligenz gefunden hat, auf diese übertragen. Doch wie sich zeigte, hat die künstliche Intelligenz zahlreiche Forscher dazu veranlasst, Probleme wie das Verhältnis von Materie und Geist, die Ursprünge des Bewusstseins, die Grenzen der Erkenntnis, das Problem der Emergenz, die Möglichkeit außermenschlicher Intelligenz usw. in neuem Licht zu betrachten und zum Teil neu zu bewerten.

Eine dem metaphysischen bzw. auch idealistischen Denken verpflichtete Sichtweise hält es (im Sinn einer schwachen KI) für unmöglich, dass Maschinen jemals mehr als nur simuliertes Bewusstsein mit wirklicher Erkenntnis und Freiheit besitzen könnten. Aus ontologischer Sicht kritisiert der amerikanische Philosoph Hubert Dreyfus die Auffassung der starken KI. Aufbauend auf der von Martin Heidegger in dessen Werk Sein und Zeit entwickelten Ontologie der „Weltlichkeit der Welt“ versucht Dreyfus zu zeigen, dass hinter das Phänomen der Welt als sinnhafte Bedeutungsganzheit nicht zurückgegangen werden kann: Sinn, d. h. Beziehungen der Dinge in der Welt aufeinander, ist ein Emergenzphänomen, denn es gibt nicht „etwas Sinn“ und dann „mehr Sinn“. Damit erweist sich jedoch auch die Aufgabe, die sinnhaften Beziehungen zwischen den Dingen der Welt in einen Computer einzuprogrammieren als – nicht nur unendliche – sondern unmögliche. Dies deshalb, weil Sinn nicht durch Addition von zunächst sinnlosen Elementen hergestellt werden kann.

Eine evolutionär-progressive Denkrichtung sieht es hingegen (im Sinn einer starken KI) als möglich an, dass Systeme der künstlichen Intelligenz einmal den Menschen in dem übertreffen könnten, was derzeit noch als spezifisch menschlich gilt. Dies birgt zum einen die Gefahr, dass solche KI-Maschinen missbraucht werden z.B. für militärische Zwecke. Andererseits birgt diese Technologie die Chance, Probleme zu lösen, deren Lösung dem Menschen wegen seines limitierten Verstands nicht möglich ist.

Dieser Artikel basiert auf dem Artikel Künstliche Intelligenz aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.

< zurück   weiter >
Aktuelle IT News