Hauptmenü
Home
Bauen
Essen & Trinken
Finanzen
Flora & Fauna
Gesundheit
Informationstechnologie
Kunst & Kultur
Politik / Geschichte
Sport & Freizeit
Technik
Transport und Verkehr
Wissenschaft
Google-Werbung
 
   
Home
Leuchtdiode (LED) Drucken E-Mail
Eine Leuchtdiode (auch Lumineszenz-Diode, kurz LED für Light Emitting Diode beziehungsweise lichtemittierende Diode) ist ein elektronisches Halbleiter-Bauelement. Fließt durch die Diode Strom in Durchlassrichtung, so strahlt sie Licht, Infrarotstrahlung (als Infrarotdiode) oder auch Ultraviolettstrahlung mit einer vom Halbleitermaterial abhängigen Wellenlänge ab.

Aufbau

Die Grafik links zeigt den Aufbau einer bedrahteten Leuchtdiode. Der Halbleiterkristall ist in einer Reflektorwanne eingebettet. Das Bild auf der rechten Seite zeigt den Reflektor nach Entfernen der transparenten Kunststoffummantelung. Der rechteckige Draht, der den Reflektor trägt, stellt bei den meisten LEDs den Kontakt zur Kathode her und nimmt die Verlustwärme auf. In der Mitte des Kristalls erkennt man Reste des Bonddrahts, der den Kontakt zur Anode herstellt.

Die Kathode (–) ist durch eine Abflachung links am Gehäusesockel markiert. Bei fabrikneuen LEDs ist zudem der Anschluss der Kathode kürzer (Merkregel: Kathode = kurz = Kante). Bei den meisten LEDs ist der Reflektor die Kathode, dann gilt auch die Merkregel, dass die (technische) Stromrichtung von dem Pfeil, den die Anode (+) durch ihre Form bildet, „angezeigt“ wird. In seltenen Fällen ist der Aufbau umgekehrt.

Hochleistungs-LEDs (H-LED) werden mit höheren Strömen betrieben. Es entstehen besondere Anforderungen an die Wärmeableitung, die sich in speziellen Bauformen ausdrücken. Die Wärme kann über die Stromzuleitungen, die Reflektorwanne oder in den LED-Körper eingearbeitete Wärmeleiter abgeführt werden.

Die industrielle Verarbeitung von bedrahteten LEDs ist aufwändig und teuer. LEDs werden daher hauptsächlich in SMD-Gehäuseform hergestellt. Eine weitere Möglichkeit ist das direkte „Bonden“ des LED-Chips auf der Platine (chip on board).
LED in SMD-Bauweise

Mehrfarbige Leuchtdioden bestehen aus mehreren (zwei oder drei) Dioden in einem Gehäuse. Meist haben sie eine gemeinsame Anode oder Kathode und einen Anschluss für jede Farbe. Bei einer Ausführung mit zwei Anschlüssen sind zwei LED-Kristalle in Gegenrichtung parallel geschaltet. Je nach Polarität leuchtet die eine oder andere Diode. Eine Wechselspannung regt beide Dioden an und erzeugt eine Überlagerungsfarbe.

Funktionsprinzip

Der Halbleiter einer LED bildet eine Diode. Wenn eine Spannung in Durchlassrichtung anliegt, wandern Elektronen zur Rekombinationsschicht am p-n-Übergang. Auf der n-dotierten Seite bevölkern sie das Leitungsband, um nach Überschreiten der Grenzfläche auf das energetisch günstigere p-dotierte Valenzband zu wechseln, sie rekombinieren mit den dort vorhandenen Löchern. Bei Silizium-Dioden erfolgt der Übergang strahlungslos durch Phononenanregung, indem das Gitter den Impuls der Teilchen aufnimmt. Der direkte Übergang bei Galliumarsenid (GaAs) geht mit der Aussendung eines Photons einher. Ein weiterer Ursprung der Photonen besteht in einer plasmonisch-polaronischen Wechselwirkung, die durch einen spinfreien Übergang direkt zur Emission eines Auger-Photoelektrons führt. Dieser Mechanismus spielt insbesondere bei exzitonischer Emission in grünen GaP-Leuchtdioden eine Rolle.

Die Bandstruktur des Halbleiters bestimmt das Verhalten der Energieübertragung. Im Unterschied zum sehr vereinfachten Bändermodell ist in der Grafik auf der Abszisse (x-Achse) der Impuls k aufgetragen, anschaulich vergleichbar einer reziproken Ortskoordinate. Rechts ist kein direkter Strahlungsübergang vom oberen Leitungsband auf das untere Valenzband möglich, da sich nicht nur die Energie, sondern auch der Impuls k verändert, im Gegensatz zum linken Beispiel (siehe auch Bandlücke).

Halbleitermaterialien mit direktem Übergang und Photonenwechselwirkung wie Gallium-Arsenid werden in der Literatur als direkte Halbleiter bezeichnet. Materialien mit indirektem Übergang wie Silizium werden als indirekte Halbleiter bezeichnet. Bei diesen tritt Phononenwechselwirkung auf, das ist eine Gitterschwingung, die zur Erwärmung des Halbleiters führt. Für LEDs kommen als Werkstoff nur direkte Halbleitermaterialien zur Anwendung.

Eigenschaften

Spektrale Charakteristik

Anders als Glühlampen sind Leuchtdioden keine Temperaturstrahler. Sie emittieren Licht in einem begrenzten Spektralbereich, das Licht ist nahezu monochrom. Deshalb sind sie beim Einsatz als Signallicht besonders effizient im Vergleich zu anderen Lichtquellen, bei denen Farbfilter den größten Teil des Spektrums herausfiltern.

Lange Zeit konnten LEDs nicht für alle Farben des sichtbaren Spektrums gefertigt werden. So scheiterte der Einsatz grüner LEDs nicht nur an deren geringer Effizienz, sondern auch daran, dass die geforderte blaugrüne Lichtfarbe nicht verfügbar war. Blaue LEDs gibt es erst seit wenigen Jahren.

Das Licht weißer LEDs wird durch vor blaue LEDs montierte Leuchtstoffe erzielt. Sie besitzen neben dem breiten Spektralbereich des Leuchtstoffes daher einen schmalbandigeren blauen Lichtanteil.

Elektrische Eigenschaften

Leuchtdioden besitzen eine exponentiell ansteigende Strom-Spannungs-Kennlinie (siehe unten), die unter anderem auch von der Temperatur abhängt. Der Lichtstrom ist nahezu proportional zum Betriebsstrom. Die Flussspannung stellt sich durch Betrieb an Konstantstrom ein, besitzt Exemplarstreuungen und ist temperaturabhängig – sie sinkt mit steigender Temperatur wie bei allen Halbleiterdioden ab. Die Versorgung über eine Konstantstromquelle oder einen Vorwiderstand ist daher zwingend. Direkter Betrieb an einer Spannungsquelle ist nicht möglich, da der Arbeitspunkt nicht ausreichend genau eingestellt werden kann. Manche Batterie-Leuchten betreiben LEDs direkt an Primärzellen – hier verlässt man sich auf einen ausreichend hohen Innenwiderstand der beigelegten (meist billigen) Batterien.

Die maximal zulässige Stromaufnahme von LEDs reicht von 2 mA (beispielsweise bei miniaturisierten SMD-LEDs oder Low-current-LEDs) über 20 mA (Standard-LEDs) bis über 18 A (Stand Juni 2008) bei Hochleistungs-LEDs. Die Flussspannung Vf (für englisch forward voltage) hängt von der Lichfarbe ab und liegt zwischen 1,3 V (Infrarot-LED) und etwa 4 V (InGaN-LED, grün, blau, weiß, Ultraviolett).

Die maximal zulässige Sperrspannung beträgt in der Regel nur 5 Volt.

LEDs lassen sich über den Betriebsstrom sehr schnell schalten und modulieren. Die hohe Modulationsgeschwindigkeit von LEDs ist beim Einsatz in der Optoelektronik (Optokoppler, Datenübertragung über Lichtleiter bzw- Kabel aus Kunststoffen oder Glasfasern sowie Freifeld-Infrarotstrahlung) wichtig. LEDs können bis weit über 100 MHz moduliert werden.

Richtungsabhängigkeit der Strahlungsleistung

Leuchtdioden werden meist mit Plastik beziehungsweise Kunstharz verkappt. Aber auch Glas- oder Metallgehäuse werden bei lichtstarken LEDs verwendet. Metallgehäuse, meistens aus Aluminium, übernehmen hauptsächlich die Aufgabe der Wärmeableitung, dienen also der Kühlung. Der Kunststoffkörper ist oft wie eine Linse geformt und liegt über dem Kristall, setzt den Grenzwinkel der Totalreflexion herab und bündelt somit die austretende Strahlungsleistung auf einen kleineren Raumwinkel. Da Glas in der Regel eine höhere Brechzahl als Plastik und Kunstharz besitzt, kann durch den Einsatz von Glaslinsen die Strahlungsleistung der LED noch stärker gebündelt werden. Das nicht entspiegelte Glas besitzt jedoch höhere Reflexionsverluste von etwa 10 %, auch weil es den Kristall nicht direkt berührt.

Alterung

Als Lebensdauer einer LED wird die Zeit bezeichnet, nach der die Lichtausbeute auf die Hälfte des Anfangswertes abgesunken ist. Leuchtdioden werden nach und nach schwächer, fallen aber in der Regel nicht plötzlich aus. Sie sind unempfindlich gegen Erschütterungen und haben keinen Hohlkörper, der implodieren kann. Die Lebensdauer hängt vom jeweiligen Halbleitermaterial und den Betriebsbedingungen (Wärme, Strom) ab. Die angegebene Lebensdauer reicht von einigen tausend Stunden bei älteren 5-Watt-LEDs bis zu über 100.000 Stunden bei mit niedrigen Strömen betriebenen LEDs. Hohe Temperaturen (gewöhnlich durch hohe Ströme) verkürzen die Lebensdauer von LEDs drastisch. Aktuelle Hochleistungs-LEDs werden, um eine maximale Lichtausbeute zu erreichen, oft an Arbeitspunkten betrieben, bei denen ihre Lebensdauer bei 15.000 bis 30.000 Stunden liegt. Auch im Handel erhältliche LED-Leuchtmittel in Glühlampenform sollen jetzt schon über 10.000 Stunden Lebenszeit erreichen.

Die Alterung von LEDs ist in erster Linie auf die Vergrößerung von Fehlstellen im Kristall durch thermische Einflüsse zurückzuführen. Diese Bereiche nehmen nicht mehr an der Lichterzeugung teil. Es entstehen strahlungslose Übergänge. Bei GaN-LEDs im blauen und Ultraviolett-Bereich ist auch eine Alterung der Kunststoffgehäuse durch das kurzwellige Licht mit einhergehender Trübung feststellbar. Bei diesen und weißen LEDs mit hoher Leistung wird deshalb der lichtdurchlässige Teil des Gehäuses manchmal aus Silikongummi gefertigt, wodurch eine Lebensdauer von 100.000 Stunden erzielt wird, was etwa 11,5 Jahren Dauerbetrieb entspricht.

Geschichte

Henry Joseph Round beobachtete 1907 erstmals, dass anorganische Stoffe unter dem Einfluss einer angelegten Spannung zu einer Lichtemission fähig sind. 1921 entdeckte der russische Physiker Oleg Vladimirovich Losev den Round-Effekt erneut und untersuchte ihn 1927 bis 1942 genauer, da er vermutete, dass das Phänomen als Umkehrung des Einsteinschen, photoelektrischen Effektes zu deuten ist. George Destriau entdeckte 1935 an Zinksulfid ein ähnliches Leuchtphänomen und bezeichnete es nach dem russischen Physiker als Lossew-Licht.

In der Folgezeit konnte ab 1951 durch die Entwicklung des Transistors ein wissenschaftlicher Fortschritt in der Halbleiterphysik erreicht werden. Weiter war es möglich, den Prozess der Lichtemission aufzuklären. Zunächst wurde allerdings weiter mit Zinksulfid experimentiert. Erfolgreicher waren jedoch die Forschungen an den als Halbleiter erkannten III-V-Verbindungshalbleitern. Ab 1957 konzentrierte man sich bei der Erforschung der Lichterzeugung ganz auf die Halbleiter. Besonders die Lichtemission im sichtbaren Bereich auf der Basis von Galliumarsenid (GaAs) und Galliumphosphid (GaP) war von Bedeutung.

Andere Quellen schreiben die Erfindung der Leuchtdiode allerdings Nick Holonyak zu und datieren sie auf 1962.

Im Laufe der Entwicklung, seit den ersten LEDs 1962, wurde die Lichtausbeute um ungefähr drei Größenordnungen von < 0,1 Lumen/Watt auf > 100 Lumen/Watt gesteigert. Diese überwiegend in großen Sprüngen stattgefundenen Entwicklungsschritte beruhen außer auf der immer besseren Qualität der Halbleiterschichten (geringere Defektdichten, weniger Verunreinigungen) auf dem Einsatz von Halbleiterheterostrukturen, niederdimensionalen Strukturen (Quantentöpfe), transparenten Substraten und der verbesserten Lichtauskopplung. Ausgehend von GaAs/AlAs (1960er Jahre, rot-gelb), wurden neue Halbleitermaterialien wie GaP (1970er Jahre, grüne LEDs) und GaN (1980er/1990er Jahre, grün bis UV) entwickelt, so dass es heute LEDs in nahezu allen Farben des Spektrums (bis auf eine Lücke im grün-gelb-Bereich) gibt. Insbesondere nach Halbleitern, die Licht im kurzwelligen Bereich (blau, UV) effektiv erzeugen, wurde lange gesucht. Hauptproblem war lange Zeit das Dotieren eines p-leitenden Bereichs von geeigneten breitlückigen Halbleitern, das erstmals 1988 bei GaN der Gruppe von Akasaki in Japan gelang, dann 1992 auch Shuji Nakamura mit einem anderen Ansatz. Letzterer führte zur ersten kommerziellen blauen LED auf GaN-Basis, die, inzwischen erweitert um weiße und grüne LEDs sowie blaue Laser, seit 1993 von Nichia vertrieben werden. Bis dahin basierten blaue LEDs auf dem Material Siliziumcarbid, das als indirekter Halbleiter für effiziente Lichtemission schlecht geeignet ist.

Die Steigerung der Effizienz und die preiswertere Herstellung der Halbleiter ist das Ziel weiterer Entwicklungen. Gegenwärtig wird besonders daran gearbeitet, sowohl transparente Trägermaterialien und Halbleiter-Materialien als auch transparente elektrische Zuleitungen herzustellen. Die Bonddrähte (elektrische Leitungen zum Halbleiterchip) decken einen Teil der aktiven Fläche ab.

Ein anderer aktueller Forschungsgegenstand sind organische Leuchtdioden, sogenannte „OLEDs“.

Stand der Technik

Die effizientesten, bereits verfügbaren weißen LEDs erreichen derzeit (Stand Januar 2009) eine Lichtausbeute von knapp über 100 Lumen/Watt  . Die Lichtausbeute liegt damit bereits deutlich über der von Glüh- und Halogenlampen mit ca. 17 bzw. 30 lm/W und gleichauf mit der von Leuchtstofflampen, die etwa 60–110 lm/W erreichen. Da durch die Messung in der Einheit Lumen die Eigenschaften des menschlichen Auges berücksichtigt werden (vgl. Hellempfindlichkeitskurve), erreichen LEDs in den Farben Grün bis Rot besonders hohe Werte, während beispielsweise blaue LEDs deutlich schlechter abschneiden. Im rein physikalischen Wirkungsgrad, also der Umwandlung von elektrischer Energie in Licht, sind blaue LEDs nicht zwangsläufig schlechter. Hier sind zurzeit bis zu 25 % erreichbar.

Die Leuchtdiodenhersteller arbeiten intensiv an der weiteren Erhöhung des Wirkungsgrades. Da dieser schon seit einiger Zeit deutlich über dem von Halogenlampen liegt, schreitet die Anwendung im Automobilbereich immer weiter voran. Für Blinker, Rück- und Bremsleuchten sowie Tagfahrlichter (vgl. LED-Scheinwerfer) sind Leuchtdioden seit 2004 im Einsatz, als Hauptscheinwerfer aufgrund höherer Anforderungen erst seit 2008.

Bereits jetzt ist die LED dabei, die Glühlampe in etlichen Spezialanwendungen zu verdrängen. Die Vorteile gegenüber der herkömmlichen Glühlampe: Die LED verbraucht weniger Leistung bei gleicher Lichtausbeute, erzeugt weniger Wärme, ist unempfindlich gegenüber Erschütterungen, erreicht deutlich kürzere Schaltzeiten und hat, eine niedrige Sperrschicht-Temperatur vorausgesetzt, eine hohe Lebensdauer. Die Lichtstärke einer gebündelten 1-Watt-Glühlampe entspricht etwa der einer LED mit 12 cd.

Für den großen Durchbruch müssen LEDs allerdings noch hinsichtlich ihrer Effizienz (Lumen pro Watt), ihrer Leistung pro Einheit und der Herstellungskosten verbessert werden. Mittlerweile (2009) sind LEDs mit über 100 lm/W von Firmen wie Seoul Semiconductor erhältlich.

Weitere Meilensteine: Mitte Dezember 2006 erreichte eine LED von Nichia in Labortests 150 lm/W. Dies entspricht bereits der Effizienz von Natriumdampf-Hochdrucklampen. Im September 2007 gelang es Cree im Labor, eine kaltweiße LED mit über 1000 lm bei einer Effizienz von 72 lm/W zu betreiben, die warmweiße Variante kam bei 52 lm/W immerhin noch auf 760 lm Lichtausbeute.

2007 galt für die Lichtausbeute handelsüblicher LED-Leuchten die Faustregel: Leistung der LED(s) multipliziert mit 4 ergibt die Leistung in Watt einer klassischen Glühlampe. 2009 wird der Faktor 4 für den Vergleich mit den doppelt so effizienten Halogenlampen gelten.

Ab 2007 kamen von vielen Herstellern LED-Lampen für die üblichen E27- und E14-Glühlampensockel auf den Markt. Allerdings erreichten viele maximal 300 Lumen Helligkeit, was etwa einer 20 Watt starken konventionellen Glühlampe entspricht. Neben der für viele Zwecke ungenügenden Helligkeit wurde auch oft die bläuliche („kalte“) Lichtfarbe kritisiert. Während die Lichtfarbe immer noch ein Problem darstellt, ist eine ausreichend starke Beleuchtung mittlerweile möglich. Seoul Semiconductor etwa gab Ende Februar 2008 die Entwicklung und Markteinführung ultraheller LEDs bekannt, welche 900 Lumen bei 10 Watt leisten. Dies kommt etwa einer Glühlampe mit 75 Watt, respektive Energiesparlampen mit 17 Watt gleich.

Zur tatsächlichen Anwendung von Hochleistungs-LEDs muss das optische System mit Primär- und Sekundärlinsen ausgelegt werden. Die hohen Ströme (typisch 350 mA und Vielfache davon, z. B. 1,4 Ampere) als Konstantstrom verlangen spezielle Treiberbausteine (Integrierte Schaltungen, Schaltregler) und elektronische Lösungen zur Ansteuerung. Der Betrieb mit niederfrequenter PWM genügt nicht allen Ansprüchen. Das thermische Management bekommt aufgrund der hohen Leistungen auf sehr kleiner Fläche (wenige mm²) und erforderlicher geringer Sperrschichttemperatur große Bedeutung – eine höhere Sperrschichttemperatur Tj (von englisch junction) hat eine Verminderung von Lebensdauer und Lichtleistung zur Folge. Eine „OSTAR LED“ nimmt beispielsweise bis zu 27 Watt auf  (Lichtabgabe bis zu 1120 lm, Stand Januar 2009), was über thermische Substrate (beispielsweise Metallkernleiterplatte) und einen Kühlkörper an die Umgebung abgeführt werden muss.

Dieser Artikel basiert auf dem Artikel LED aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
< zurück   weiter >
Aktuelle IT News